;“ The Journal of Supercomputing, 22, 231-250, 2002
‘~ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Comparison of Co-Array Fortran and OpenMP
Fortran for SPMD Programming

ALAN J. WALLCRAFT wallcraf@ajax.nrlssc.navy.mil
Naval Research Laboratory, Stennis Space Center, MS 39529

Abstract. Co-Array Fortran, formally called F~~, is a small set of extensions to Fortran 90/95 for Single-
Program-Multiple-Data (SPMD) parallel processing. OpenMP Fortran is a set of compiler directives that
provide a high level interface to threads in Fortran, with both thread-local and thread-shared memory.
OpenMP is primarily designed for loop-level directive-based parallelization, but it can also be used for
SPMD programs by spawning multiple threads as soon as the program starts and having each thread
then execute the same code independently for the duration of the run. The similarities and differences
between these two SPMD programming models are described.

Co-Array Fortran can be implemented using either threads or processes, and is therefore applicable
to a wider range of machine types than OpenMP Fortran. It has also been designed from the ground up
to support the SPMD programming style. To simplify the implementation of Co-Array Fortran, a formal
Subset is introduced that allows the mapping of co-arrays onto standard Fortran arrays of higher rank.
An OpenMP Fortran compiler can be extended to support Subset Co-Array Fortran with relatively little
effort.

Keywords: Co-Array, Fortran, OpenMP, SPMD

1. Introduction

In Single-Program-Multiple-Data (SPMD), a single program is replicated a fixed
number of times, each replication having its own set of data objects. For example, in
SPMD domain decomposition a region is divided into nonoverlapping sub-regions
and each program replication is assigned its own sub-region. The best known SPMD
Application Programming Interface (API) is the Message Passing Interface (MPI)
library [10]. Like most subroutine library based SPMD APIs, an apparently stand-
alone program is compiled as if for a single processor but replicated on MPI startup
with each replication executing asynchronously except when communicating with
another replication by calling a MPI library routine. A key feature of a message
passing library, such as MPI, is that two replications must cooperate (i.e. both make
a subroutine call) if communication is to take place between them. This approach is
widely used, but there are inconsistencies caused by the compiler assuming a single
replication when in fact there are many. In addition, message passing is intrinsi-
cally slower and harder to program than direct memory copies on machines with
a hardware global memory. MPI-2 provides a put/get capability that can in princi-
ple take advantage of direct memory copies, but it relies on C procedures whose
calling mechanism differs from that of Fortran and the put/get syntax is further
obscured by the need to be compatible with similar message passing subroutines [5].
Both Co-Array Fortran and OpenMP Fortran replace message passing with direct

232 WALLCRAFT

memory access expressed via assignment statements. They are therefore potentially
faster than MPI on machines with a hardware global memory. In both cases, the
compiler is to some extent aware that the program is SPMD which avoids either
all (Co-Array Fortran) or some (OpenMP Fortran) of MPI’s incompatibilities with
Fortran.

Section 2 is a brief overview of Co-Array Fortran and OpenMP Fortran. Section 3
describes a simple example program. Section 4 compares and contrasts the lan-
guages in more detail. Section 5 introduces Subset Co-Array Fortran, and describes
how the Subset can be automatically translated into OpenMP Fortran.

2. Language overview
2.1. Co-Array Fortran

Co-Array Fortran is a simple syntactic extension to Fortran 90/95 that converts it
into a robust, efficient parallel language [6]. It looks and feels like Fortran and
requires Fortran programmers to learn only a few new rules. The few new rules
are related to two fundamental issues that any parallel programming model must
resolve, work distribution and data distribution.

First, consider work distribution. A single program is replicated a fixed number
of times, each replication having its own set of data objects. Each replication of the
program is called an image. Each image executes asynchronously and the normal
rules of Fortran apply, so the execution path may differ from image to image. The
programmer determines the actual path for the image with the help of a unique
image index, by using normal Fortran control constructs and by explicit synchroniza-
tions. For code between synchronizations, the compiler is free to use all its normal
optimization techniques, as if only one image is present.

Second, consider data distribution. The co-array extension to the language allows
the programmer to express data distribution by specifying the relationship among
memory images in a syntax very much like normal Fortran array syntax. One new
object, the co-array, is added to the language. For example,

REAL, DIMENSION(N)[*]:X,Y

X(:) =Y()[e]

declares that each image has two real arrays of size N. If Q has the same value
on each image, the effect of the assignment statement is that each image copies
the array Y from image Q into its local array X. Co-Arrays cannot be constants or
pointers or automatic data objects, and they always have the SAVE attribute unless
they are allocatable or dummy arguments.

Array indices in parentheses follow the normal Fortran rules within one memory
image. Array indices in square brackets provide an equally convenient notation for
accessing objects across images and follow similar rules. Bounds in square brackets
in co-array declarations follow the rules of assumed-size arrays since co-arrays are

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 233

always spread over all the images. The programmer uses co-array syntax only where
it is needed. A reference to a co-array with no square brackets attached to it is
a reference to the object in the local memory of the executing image. Since most
references to data objects in a parallel code should be to the local part, co-array
syntax should appear only in isolated parts of the code. If not, the syntax acts as
a visual flag to the programmer that too much communication among images may
be taking place. It also acts as a flag to the compiler to generate code that avoids
latency whenever possible.

Input/output has been a problem with previous SPMD APIs, such as MPI,
because standard Fortran I/O assumes dedicated single-process access to an open
file and this constraint is often violated when the API assumes that I/O from each
image is completely independent. Co-Array Fortran includes only minor extensions
to Fortran 90/95 1/O, but all the inconsistencies of earlier APIs have been avoided
and there is explicit support for parallel I/O. In addition I/O is compatible with
implementations that map images onto either threads or processes (or a combina-
tion of the two).

The only other additions to Fortran 90/95 are several intrinsics. For example: the
integer function NUM_IMAGES () returns the number of images, the integer func-
tion THIS_IMAGE () returns this image’s index between 1 and NUM_IMAGES (),
and the subroutine SYNC_ALL() is a global barrier which requires all opera-
tions before the call on all images to be completed before any image advances
beyond the call. In practice it is often sufficient, and faster, to only wait for the
relevant images to arrive. SYNC_ALL(WAIT) provides this functionality. There
is also SYNC_TEAM(TEAM) and SYNC_TEAM(TEAM,WAIT) for cases where only
a subset, TEAM, of all images are involved in the synchronization. The intrinsics
START_CRITICAL and END_CRITICAL provide a basic critical region capability.
It is possible to write your own synchronization routines, using the basic intrinsic
SYNC_MEMORY. This routine forces the local image to both complete any outstand-
ing co-array writes into “global” memory and refresh from global memory any local
copies of co-array data it might be holding (in registers for example). A call to
SYNC_MEMORY is rarely required in Co-Array Fortran, because there is an implicit
call to this routine before and after virtually all procedure calls including Co-Array’s
built in image synchronization intrinsics. This allows the programmer to assume that
image synchronization implies co-array synchronization.

2.2. OpenMP Fortran

OpenMP Fortran is a set of compiler directives that provide a high level inter-
face to threads in Fortran, with both thread-local and thread-shared memory. Most
compilers are now complient with version 1.1 of the specification [8], which will be
discussed here unless otherwise noted. Version 2.0 [9] was released in November
2000 but is not yet widely available. OpenMP can also be used for loop-level direc-
tive based parallelization, but in SPMD-mode N threads are spawned as soon as the
program starts and exist for the duration of the run. The threads act like Co-Array
images (or MPI processes), with some memory private to a single thread and other

234 WALLCRAFT

memory shared by all threads. Variables in shared memory play the role of co-arrays
in Co-Array Fortran, i.e. if two threads need to “communicate” they do so via vari-
ables in shared memory. Local non-saved variables are thread private, and all other
variables are shared by default. The directive ! $OMP THREADPRIVATE can make
a named common private to each thread.

Threaded I/O is well understood in C [3], and many of the same issues arise
with OpenMP Fortran I/O. A single process necessarily has one set of I/O files
and pointers. This means that Fortran’s single process model of I/O is appropriate.
I/O is “thread safe” if multiple threads can be doing I/O (i.e., making calls to I/O
library routines) at the same time. OpenMP Fortran requires thread safety for I/O to
distinct unit numbers (and therefore to distinct files), but not to the same I/O unit
number. A SPMD program that writes to the same file from several threads will
have to put all such I/O operations in critical regions. It is therefore not possible in
OpenMP to perform parallel I/O to a single file.

The integer function OMP_GET_NUM_THREADS () returns the number of threads,
the integer function OMP_GET_THREAD_NUM() returns this thread’s index between
0 and OMP_GET_NUM_THREADS () -1. The compiler directive ! SOMP BARRIER is
a global barrier which requires all operations before the barrier on all threads to
be completed before any thread advances beyond the call. The directives ! $OMP
CRITICAL and !$OMP END CRITICAL provide a critical region capability, with
more flexiblity than that in Co-Array Fortran, and in addition there are intrinsic rou-
tines for shared locks that can be used for the fine grain synchronization typical of
threaded programs [3]. The directives ! SOMP MASTER and ! $OMP END MASTER
provide a region that is executed by the master thread only, ! SOMP SINGLE and
!$OMP END SINGLE identify a region executed by a single thread. Note that
all directive defined regions must start and end in the same lexical scope. It is
possible to write your own synchronization routines, using the basic directive
! SOMP FLUSH. This routine forces the thread to both complete any outstanding
writes into memory and refresh from memory any local copies of data it might be
holding (in registers for example). It only applies to “thread visible” variables in
the local scope, and can optionally include a list of exactly which variables it should
be applied to. BARRIER, CRITICAL, and END CRITICAL all imply FLUSH, but
unlike Co-Array Fortran it is not automatically applied around subroutine calls.
This means that the programmer has to be very careful about making assumptions
that thread visible variables are current. Any user-written synchronization routine
should be preceeded by a FLUSH directive every time it is called.

A subset of OpenMP’s loop-level directives, that automate the allocation of loop
iterations between threads, are also available to SPMD programs but are not typi-
cally used.

Unlike High Performance Fortran (HPF) [4], which has compiler directives that
are carefully designed to not alter the meaning of the underlying program, the
OpenMP directives used in SPMD-threaded programming are declaration attributes
or executable statements. They are still properly expressible as structured comments,
starting with the string “! $OMP”, because they have no effect when the program
has exactly one thread. But they are not “directives” in the conventional sense.
For example “!$OMP BARRIER” does not allow any thread to continue until all

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 235

have reached the statement. When there is more than one thread, SPMD OpenMP
defines a new language that is different from uni-processor Fortran in ways that are
not obvious by inspection of the source code. For example:

1. Saved local variables are always shared and non-saved local variables are always
threadprivate. It is all too easy to inadvertently create a saved variable. For
example, in Fortran 90/95 initializing a local variable, e.g., INTEGER :: I=0,
creates a saved variable. A DATA statement has a similar effect in both Fortran
77 and Fortran 90/95. In OpenMP such variables are always shared, but often
the programmer’s intent was to initialize a threadprivate variable (which is not
possible with local variables in version 1.1).

2. In version 1.1, only common can be either private or shared under programmer
control. Module variables, often used to replace common variables in Fortran
90/95, are always shared. Version 2.0 allows individual saved and module vari-
ables to be declared private.

3. ALLOCATE is required to be thread safe, but because only common variables
can be both private and non-local, it is difficult to use ALLOCATABLE for
private variables. A pointer in THREADPRIVATE common may work, but is
not a safe alternative to an allocatable array.

4. It is up to the programmer to avoid race conditions caused by the compiler using
copy-in/copy-out of thread-shared array section subroutine arguments.

5. There is no way to document the default case using compiler directives.
There is a ! SOMP THREADPRIVATE directive but no matching optional ! $OMP
THREADSHARED directive. Directives that imply a barrier have an option,
NOWAIT, to skip the barrier but no option, WAIT, to document the default
barrier.

6. Sequential reads from multiple threads must be in a critical region for thread
safety and provide a different record to each thread. In all process-based SPMD
models sequential reads from multiple processes provide the same record to each
process.

SPMD OpenMP is not a large extension to Fortran but OpenMP programs cannot
be maintained by Fortran programmers unfamiliar with OpenMP. For example, a
programmer has to be aware that adding a DATA statement to a subroutine could
change the multi-thread behavior of that subroutine. In contrast, adding a DATA
statement, or making any other modifications, to a Co-Array Fortran program is
identical in effect to making the same change to a Fortran 90/95 program providing
no co-arrays are involved (i.e., providing no square brackets are associated with the
variable in the local scope).

Version 2.0 of the specification adds relatively few capabilities for SPMD pro-
grams, but the extension of THREADPRIVATE from named common blocks to saved
and module variables will provide a significantly improved environment particularly
for Fortran 90 programmers. It is unfortunate that there is still no way to document
the default via a similar THREADSHARED directive. If this existed, the default status
of variables would cease to be an issue because it could be confirmed or overridden
with compiler directives. The lack of fully thread safe I/O places an unnecessary

236 WALLCRAFT

burden on the SPMD programmer. The standard should at least require that thread
safe I/O be available as a compile time option. This is much easier for the compiler
writer to provide, either as a thread-safe I/O library or by automatically insert-
ing a critical region around every I/O statement, than the application programmer.
The sequential read limitation is a basic property of threads, and is primarily an
issue because many Fortran programmers are familiar with process-based SPMD
APIs. Version 2.0 has a COPYPRIVATE directive qualifier that handles this situation
cleanly. For example:

1SOMP SINGLE
READ(11) A,B,C
1$OMP END SINGLE, COPYPRIVATE(A,B,C)

Here “A,B,C” are threadprivate variables that are read on one thread and then
copied to all other threads by the COPYPRIVATE clause at the end of the single
section. Co-Array Fortran I/O is designed to work with threads or processes, and a
proposed extension can handle this case:

READ(11,TEAM=ALL) A,B,C

All images in the team perform the identical read and there is implied synchro-
nization before and after the read. If images are implemented as threads, the I/O
library could establish a separate file pointer for each thread and have each thread
read the file independently or the read could be performed on one thread and the
result copied to all others.

The limitations of OpenMP are more apparent for SPMD programs than for
those using loop-level directives, which are probably the primary target of the lan-
guage. SPMD programs are using orphan directives, outside the lexical scope of the
parallel construct that created the threads [8]. OpenMP provides a richer set of
directives within a single lexical scope, which allow a more complete documenta-
tion of the exact state of all variables. However, it is common to call a subroutine
from within a do loop that has been parallelized and the variables in that subrou-
tine have the same status as those in a SPMD subroutine. Also, almost all OpenMP
compilers support Fortran 90 or 95, rather than Fortran 77, but version 1.1 direc-
tives largely ignore Fortran 95 constructs. Version 2.0 has more complete Fortran
95 support, which provides an incentive for compilers to be updated to version 2.0.

3. A simple example

The calculation of 7 was used as an example in the original OpenMP proposal
[7], which presented three versions using OpenMP’s loop level parallelization con-
structs, using MPI, and using pthreads. SPMD versions using Co-Array Fortran and
OpenMP Fortran are presented here. First Co-Array Fortran:

program compute_pi
double precision :: mypi[*],pi,psum,x,w
integer :: n[*],me,nimg, i

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 237

nimg = num_images()
me this_image()

if (me==1) then
write(6,*) 'Enter number of intervals’; read(5,*) n

write(6,*) ’‘number of intervals = ’,n
nf:] =n
endif

call sync_all(1l)

w = 1.d0/n; psum = 0.d0
do i= me,n,nimg
X =w * (i - 0.5d0); psum = psum + 4.d0/(1l.d0+x*x)
enddo
mypi = w * psum
call sync_all()

if (me==1) then

pi = sum(mypi[:]); write(6,*) ’'computed pi = ',pi
endif
call sync_all(1l)
end

The number of intervals and the partial sums of 7 are declared as co-arrays,
because these must be communicated between images. All other variables are local
to each image. The number of intervals is input on image 1 and broadcast to all
images. Note that n without square brackets refers to the local part, n[me]. All
images wait at the first sync_all for image 1 to arrive, signaling that n is safe
to use. Each image then waits at the second sync_all for all images to complete
the calculation. Finally, the first image adds the co-array of partial sums and writes
out the result. The final sync_all prevents the other images from terminating the
program before image 1 completes the write.

In OpenMP Fortran this becomes:

program main
call omp_set_dynamic(.false.)
call omp_set_nested(.false.)
!Somp parallel
call compute_pi
!Somp end parallel

stop

end

subroutine compute_pi

double precision :: psum,x,w ! threadprivate
integer :: me,nimg,i ! threadprivate
double precision :: pi

integer t:n

common /pin/ pi,n

238 WALLCRAFT

!*omp threadshared(/pin/)
integer omp_get_num_threads,omp_get_thread_num

nimg = omp_get_num_threads()
me = omp_get_thread_num() + 1

!Somp master
write(6,*) ’'Enter number of intervals’; read(5,*) n
write(6,*) ’'number of intervals = ’,n
pi = 0.d0

!Somp end master

!Somp barrier

w = 1.d0/n; psum = 0.d0
do i= me,n,nimg
X =w* (i - 0.5d0); psum = psum + 4.d0/(1l.d0+x*x)
enddo
!Somp critical
pi = pi + (w * psum)
!Somp end critical
!Somp barrier

!Somp master
write(6,*) ‘computed pi = ’,pi
!Somp end master
!Somp barrier
end

All SPMD OpenMP programs start with the same main program. It spawns the
number of threads specified by the environment variable OMP_NUM_THREADS, then
immediately calls the top level subroutine that represents the actual program to
replicate. On exit from this subroutine all threads except the master thread are
freed and the program then exits. The number of intervals and 7 are declared in
named common and are therefore global (thread-shared) variables by default. There
is no compiler directive available to confirm the default, so a pseudo-directive,
!*omp threadshared, is used to document that the common is shared. All other
variables are local to the subroutine and therefore private to each thread (no saved
variables). The number of intervals is input on the master thread, and since n is a
global variable it is automatically available on all threads. All threads wait at the
first ! $omp barrier for the master thread to arrive, signaling that n is safe to
use. Each thread then independently calculates its part of 7 and adds it to the
total 7. Updating 7 is in a critical region, so that only one thread at a time can
access 7. Each thread then waits at the second ! Somp barrier for all threads to
complete the calculation. Finally, the master thread writes out the result. The final
!Somp barrier prevents the other threads from terminating the program before
the master completes the write. This is probably unnecessary, since it is the master
that will execute stop in the main program.

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 239

A relatively minor difference between the two versions is that Co-Array Fortran
has a richer set of synchronization operations. In many cases, sync_all(1) is sig-
nificantly faster than sync_all () because the former allows the image to continue
as soon as image 1 arrives and the latter requires the image to wait for all images
to arrive. OpenMP’s ! $omp barrier is the only synchronization of its kind pro-
vided by OpenMP and is equivalent to sync_all(). A synchronization routine
like sync_all(wait) can be written in OpenMP, provided it is always called in
conjunction with a !$omp flush directive. The primary difference between the
two versions is that global variables are co-arrays spread across all images in Co-
Array Fortran, but are standard variables in global memory (not assigned to any
particular thread) in OpenMP Fortran. However, the difference is more one of style
than substance. The OpenMP version can be rewritten in Co-Array Fortran, by only
using the part of each co-array on image 1:

program compute_pi

double precision psum, x,w

integer :: me,nimg,i
double precision t: pi[*] ! only use pi[l]
integer HER of I ! only use n[1]

nimg = num_images()
me = this_image()

if (me==1) then
write(6,*) 'Enter number of intervals’; read(5,*) n

write(6,*) ‘number of intervals = ’,n
pi = 0.d0
endif

call sync_all()

w = 1.d0/n[1]; psum = 0.d0
do i= me,(n[l]),nimg
X =w * (i - 0.5d0); psum = psum + 4.d0/(1l.d0+x*x)
enddo
call start_critical()
pi[l] = pi[l] + (w * psum)
call end_critical()
call sync_all()

if (me==1) then
write(6,*) ’'computed pi = ’,pi
endif
call sync_all()
end

In order to emulate shared variables, the Co-Array Fortran code replicates them
on all images but only uses the part on image 1. All references to such variables must
end in [1]. In the case of large shared arrays, it would be possible to avoid the space
this wastes by defining a co-array of a derived type with a pointer component and

240 WALLCRAFT

then only allocating an array to the pointer on image 1. This sounds complicated,
but is in fact the standard way for Fortran 90/95 to handle an array of arrays (or
in this case a co-array of arrays). The master directive in OpenMP is replaced
by a test for the first image. Co-Array Fortran does not treat the first image any
differently than the others (i.e., it has no master image). However, standard input
is available on the first image only, so if the master’s tasks include reading standard

input Co-Array Fortran must use the first image as the master.

Similarly, the Co-Array version can be expressed in OpenMP by adding a per-

thread dimension to each shared variable:

program main
call omp_set_dynamic(.false.)
call omp_set_nested(.false.)
!Somp parallel
call compute_pi
!Somp end parallel
stop
end
subroutine compute_pi
integer, parameter
double precision

:: max_threads=128
integer :

pi,psum,x,w

me,nimg, i
double precision mypi
integer n
common /pin/ mypi(max_threads),n(max_threads)

!*omp threadshared(/pin/)
integer omp_get_num_threads,omp_get_thread_num

me
nimg

omp_get_thread_num() + 1
omp_get_num_threads ()

if (me==1) then
if (nimg>max_threads) then
write(6,*) ’'error - too many threads ',nimg
stop
endif
write(6,*) ’'Enter number of intervals’;
read(5,*) n(me)

write(6,*) 'number of intervals = ’,n(me)
n(l:nimg) = n(me)
endif
!Somp flush

call caf_sync_all(1l)

w = 1.d0/n(me); psum = 0.d0
do i= me,n(me),nimg

X =w* (i - 0.5d0); psum = psum + 4.d0/(1l.d0+x*x)

enddo

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 241

mypi(me) = w * psum
!Somp barrier

if (me==1) then
pi=sum(mypi(l:nimg)); write(6,*) ’'computed pi=’',pi
endif
!Somp flush
call caf_sync_all(l)
end

In order to emulate co-arrays, the OpenMP code puts them in named common
(i.e. makes them shared variables) and converts co-array dimensions into additional
regular array dimensions. Since array size has to be known at compile time, the
parameter max_threads is introduced which has to be no smaller than the actual
number of threads at run time. If this is set to a safe value, e.g., the number of pro-
cessors on the machine, it is probably an over estimate and hence wastes memory.
Co-Array Fortran allows the local part of a co-array to be referenced without square
brackets, but all references to emulated co-arrays must include the co-dimensions,
e.g. n(me). It also “knows” that the co-size is num_images (), somypi[:] is legal
Co-Array Fortran but must become mypi (1:nimg) in OpenMP Fortran. The rou-
tine caf_sync_all is assumed to be an OpenMP implementation of sync_all
but it can only synchronize threads, the ! $omp flush is also required to synchro-
nize shared objects.

4. A comparison

The features of SPMD OpenMP Fortran and Co-Array Fortran are summarized in
Table 1. OpenMP Fortran is only applicable to systems with a single global memory
space, and perhaps only to those with flat single level addressing and cache coher-
ence across the entire memory space (i.e., systems such as the Cray T3E are not
candidates for OpenMP). However, this includes a wide range of SMP and DSM
systems with from 2 to 256 processors. OpenMP is a relatively new “standard,” but
it has wide vendor and third party support is available on almost all machines with a
suitable global shared memory, from PC’s to MPP’s. Compilers with partial support
for OpenMP typically do not support it in SPMD-mode, but most compilers now
claim full version 1.1 complience. Version 2.0 complient compilers are not yet typi-
cally available, but for SPMD programmers only the extension of THREADPRIVATE
to saved and module variables and the new COPYPRIVATE clause are significant,
so even partial support for version 2.0 may be sufficient.

Co-Array Fortran can take full advantage of a hardware global memory, but
it can also be used on shared nothing systems with physically distinct memories
connected by a network. However, performance is expected to only be about as
good as MPI on such systems. Co-Array Fortran can be implemented using threads
or processes, or on a cluster of SMP systems it could even use threads within a SMP
system and processes between systems. It is therefore more widely applicable than
OpenMP Fortran. However, the Cray T3E is the only machine with a Co-Array
Fortran compiler today and it implements only a subset of the language. There is

242 WALLCRAFT

Table 1. Features of SPMD OpenMP Fortran and Co-Array Fortran

Feature SPMD OpenMP Fortran Co-Array Fortran
availability wide-spread Cray T3E only
implementable using threads threads and/or processes
target memory architecture cache-coherent global any
on single thread/image, get standard Fortran extended Fortran
incompatible Fortran extension copy-in/out none
local variables private private
saved and module variables shared private (or co-array)
common variables shared (or private) private (or co-array)
pointers local or global local
communication shared variables co-arrays
memory synchronization local scope global scope
memory layout control automatic for private automatic for private
none for shared automatic for co-arrays
synchronization global global or team
(local short cut)
critical regions, locks critical region
I/O namespace single and shared single but private
I/O operations unsafe to same unit safe

a definite need for a source to source compiler that will allow Co-Array Fortran to
run on the same systems as OpenMP Fortran. This is discussed in more detail in
Section 5.

Any Co-Array Fortran program is translatable into OpenMP Fortran and vice
versa. However, the differences between co-arrays and shared arrays tend to steer
programmers to alternative solutions to the same problem. For example, suppose
there are P images or threads and we need to perform operations both on an array,
A(1:M,1:N), and its transpose, AT (1:N, 1:M). For simplicity further assume that
both M and N are multiples of P. In Co-Array Fortran we would probably store both
as co-arrays, A(1:M,1:N/P)[*] and AT(1:N,1:M/P)[*], and write a routine
to copy between them. Since A and AT are co-arrays, the routine can do a direct
copy without using intermediate buffers. In OpenMP, for efficiency of memory lay-
out we might similarly store both as private arrays on each thread, A(1:M,1:N/P)
and AT(1:N,1:M/P), but now we have to provide a shared buffer to copy between
them. The simplest shared buffer to use is the entire array, B(1:M,1:N). Then
the copy routine is just copy each private A into the shared B, barrier, copy the
shared B into each private AT. An alternative in OpenMP is to always store the
array as a whole shared array, A(1:M,1:N). It may then be unnecessary to store
the transpose at all, although cache effects may make it advisable to also have a
shared transpose, AT(1:N,1:M). The shared array approach is also available in
Co-Array Fortran by placing arrays on one image, but to avoid wasting memory
a co-array of arrays, CA[1]%A(1:M,1:N), would probably be used rather than a
simple co-array, A(1:M,1:N)[1]. In either case, the co-array syntax makes clear
that accessing the “shared” array is a potentially expensive remote memory opera-
tion. The shared array approach is sometimes the easiest to use, and is more cleanly
expressible in OpenMP Fortran, but it comes at the cost of less programmer control
over performance.

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 243

OpenMP Fortran contains no directives to control the layout of shared arrays in
memory. This is not an issue on SMP systems with uniform memory access, but
where in memory shared arrays are placed may have a large effect on performance
on non-uniform memory access (NUMA) systems. This limits OpenMP’s scalability
to large numbers of nodes, since large node-count systems tend to be NUMA.
OpenMP Fortran is primarily designed for fine grained loop parallelization, which
is typically appropriate for small node counts. Therefore the lack of layout control is
less of an issue for OpenMP in its primary domain of interest, but it is a concern for
SPMD programs. All memory in Co-Array Fortran is associated with a local image,
so memory placement on NUMA systems is simple to arrange and does not effect
scalability. Since Co-Array Fortran always knows when remote communication is
involved, the global memory does not need to be cache coherent and in fact each
image’s memory can be physically and logically distinct with only a fast network
connecting them. Overall, Co-Array Fortran has clear advantages on systems with
large node counts (above about 32 processors).

Co-Array Fortran is a simple set of extensions to Fortran 90/95. The features that
are compatible with Fortran 77 do not produce a viable subset language. OpenMP
compilers typically support Fortran 90 or 95, but the version 1.1 compiler directives
really only apply well to Fortran 77 programs. The lack of support for thread private
module variables and for ALLOCATABLE are two examples of this. Fortran 77 is
probably still the dominant variant for SPMD programs, but large projects, in par-
ticular, are increasingly migrating to Fortran 95 and will need version 2.0 OpenMP
compilers.

One example of Co-Array Fortran’s reliance on Fortran 90/95 features is that any
subroutine with a co-array dummy argument must have an explicit interface. Hence
a Fortran 77 subset would either have to ban co-array dummy arguments or provide
an extension to the existing language that distinguishes between co-array actual
arguments and local part actual arguments without an explicit interface. Explicit
interfaces make Co-Array Fortran significantly safer to use. The compiler always
has complete knowledge of co-arrays except in the special case when the local part
of a co-array is passed to a dummy argument of co-rank zero. The programmer
is responsible for co-array safety in this special case, and must make sure that no
other image references the passed piece of the co-array between the subroutine
call and return. A synchronization call in Co-Array Fortran always implies that all
co-arrays are up to date (except those passed to co-rank zero dummies, and these
must not be referenced from other images anyway). All the co-array “machinery”
works behind the scenes to allow the programmer to do the obvious thing and in
fact get the expected result.

OpenMP Fortran provides a significantly lower level programmer interface. Once
an object has been passed to a procedure through its argument list there is no
way to tell if it is a shared object or a private object. Pointers can be shared or
private and both can reference either shared or private variables, so it is possible
(although unsafe) for one thread to access the private memory of another thread.
Also, synchronization primitives only apply to shared objects in the local scope. All
subroutine arguments are potentially “thread visible” (i.e. shared), so all have to
be flushed even though some may actually be private. Local scope synchronization

244 WALLCRAFT

has several pitfalls to trap the unwary programmer. One of the most obvious is
copy-in/copy-out:

common/shared/ i(100)
!Somp master
i(1:100) = 0
!Somp end master
!Somp barrier
call subl(i(2:100:2))
!Somp master
write(6,*) i(4)
!Somp end master
end
subroutine subl(i2)
integer :: i12(0:49),omp_get_thread_num
i2 (omp_get_thread_num()) = omp_get_thread_num()
!Somp barrier
end

The barrier in subl synchronizes i2, but, since it is not an assumed shape array,
12 is probably only a local contiguous copy of 1 (2:100:2) and a different local
copy on every thread (the only practical alternative a compiler has is to in-line
subl). If a local copy is used, the barrier has no effect on i and when each thread
returns from subl they will independently copy back their entire local version of
1(2:100:2) into the shared original and perhaps also update a register holding
i(4) from the local version. This means that there is no way to tell if the write
prints the value 1, as expected, or 0. This is not just a local scope issue, since the
problem remains even if the second barrier is moved from inside subl to just after
the call to subl. The value of i(4) then depends on which thread exits subl
last. The only safe approach is for the programmer to manually implement steps
similar to those that Co-Array Fortran takes. Issue a !$omp flush before and
after every subroutine call that might contain synchronization, and if a shared array
section that is not contiguous in array element order is passed to a subroutine
the associated dummy array argument must be assumed shape (and the subroutine
interface therefore explicit). The OpenMP specification makes the above example
illegal, i.e. it places the responsibility onto the programmer to avoid such copy-
in/copy-out race conditions. Co-Array Fortran guarantees that copy-in/copy-out is
never required for co-array dummy arguments, e.g., if 12 were a co-array an array
section actual argument would be illegal (and detectable as an error at compile
time) unless i2 is declared assumed shape. All library-based SPMD APIs have
similar consistency problems. The MPI-2 standard [5] has a good discussion of these
issues, which can cause optimization problems in Fortran 77 but are much more
serious for Fortran 90/95. Co-Array Fortran may be unique among SPMD APIs in
having no known conflicts with Fortran 90/95. High Performance Fortran is also
consistent with Fortran 95, but is not formally a SPMD API although it is often
implemented using SPMD.

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 245

The previously listed limitations make OpenMP Fortran a less than optimal
choice for very large SPMD programs, but it has the important advantage of being
widely available. There is a preliminary port of the NRL Layered Ocean Model
(NLOM) to OpenMP Fortran [11]. NLOM already ran in SPMD-mode using MPI
or SHMEM. The original code is 69,000 lines of Fortran 77 including 22,000 com-
ment lines of which 500 are compiler directives (many are repeats in different
dialects). Ignoring communication routines, adding support for OpenMP required
900 OpenMP compiler directives, 500 to characterize all COMMON’s (could be
reduced using INCLUDE) and 400 primarily to handle I/O. This illustrates a general
property of compiler directive based APIs, they are very verbose. Other, extensive,
changes were required to allow sequential I/O to be compatible with either SPMD
processes or SPMD threads. Programs that do all sequential I/O from a single image
would not require these modifications. If the COPYPRIVATE directive qualifier had
been available the sequential I/O modifications would have been greatly simplified.
Shared variables were added to handle sequential I/O, but in general variables out-
side communication routines are THREADPRIVATE. Fortunately, NLOM does not
use modules and most saved local variables had already been placed in common.
However, DATA statement initialization had to be modified to make sure there were
no implied saved local variables. Since this was a prototype port, the required com-
munication routines were generated by replicating the existing 4,000 line SHMEM
version and making as few changes as possible to support OpenMP.

The native OpenMP port of NLOM has been made obsolete by adding support
to NLOM for a dialect of Co-Array Fortran that can be automatically translated
into OpenMP Fortran using a nawk [2] script (described in more detail below).
Outside communication routines, this involved adding macros (that are null except
when using Co-Array Fortran) to 230 I/O statements and adding Co-Array syn-
tax to a single subroutine that defines arrays (co-arrays) used by communication
routines. Inside communication routines, this involved replicating and modifying
SHMEM-specific code fragments for Co-Array Fortran (with each SHMEM library
call mapping to a single co-array assignment statement), and adding a macro iden-
tifying the local part of a co-array to 375 assignment statements. The latter are
only required due to limitations in the nawk script and are null when using a true
Co-Array Fortran compiler. The total effort involved in writing the nawk script and
adding Co-Array Fortran support to NLOM was significantly less than required to
add native OpenMP support. The nawk script adds all required OpenMP compiler
directives and emulates Co-Array Fortran I/O, thus removing the two most time
consuming aspects of the port.

NLOM is typical of many SPMD codes in using a program-specific interface to
handle all communication. This greatly simplifies porting to a new SPMD API, but
reduces the opportunity for optimization with a low latency API (such as either
Co-Array and OpenMP Fortran). Porting an existing SPMD program, e.g. one using
MPI, that did not separate out communication to OpenMP Fortran would be dif-
ficult, because MPI allows communication between what are in OpenMP terms
THREADPRIVATE objects and in fact has no concept of THREADSHARED objects.
Porting any existing SPMD program to Co-Array Fortran would be much eas-
ier, because all objects including co-arrays can be treated as local to an image

246 WALLCRAFT

and co-arrays need only be introduced at all for objects that are involved in
communication.

5. Translation
5.1. Subset Co-Array Fortran

The full Co-Array Fortran language [6] provides support for legacy SPMD programs
based on Cray’s SHMEM put and get library [1]. It requires that all variables in
named COMMON be treatable either as standard variables or as co-arrays, and
which objects in the COMMON block are co-arrays is allowed to vary between
scoping units. This makes it difficult to implement co-arrays as if they were Fortran
arrays of higher rank. The following relatively minor restrictions on the full language
define a formal Subset that significantly widens the implementation choices, and in
particular allows a simple mapping from Co-Array Fortran to OpenMP Fortran.

1. If a named COMMON includes a co-array, every object in that COMMON must

be a co-array. The objects in the COMMON must agree in size, type, shape,

co-rank and co-extents in all scoping units that contain the COMMON.

The EQUIVALENCE statement is not permitted for co-arrays.

The sum of the local rank plus the co-rank of a co-array is limited to seven.

A dummy co-array argument cannot have assumed size local dimensions.

A dummy co-array argument cannot have assumed shape local dimensions, unless

the co-rank is one. The actual argument shall then also have co-rank one.

6. If a dummy argument has both nonzero local rank and nonzero co-rank and
does not have assumed shape local dimensions, the actual argument must agree
in size and type with the dummy argument.

A

The restrictions on COMMON are similar to nonsequence COMMON in HPF
[4]. The restrictions on EQUIVALENCE are more severe than in HPF, for simplic-
ity, but in Subset Co-Array Fortran the restrictions only apply to co-arrays. COM-
MON can be largely replaced by MODULE for new programs, so the restrictions
are easily met except when migrating legacy Fortran 77 programs that make heavy
use of COMMON and either EQUIVALENCE or different layouts for the same
named common in different scopes. If the objects in a legacy COMMON already
agree in size, type, and shape in all scoping units (which is good programming prac-
tice), then every object in that COMMON can be converted to a co-array without
changing the meaning of the program. This is because a reference to a co-array with-
out square brackets is always a reference to the local part of the co-array. Migration
to the Subset is therefore easy in this case.

In Co-Array Fortran both the local rank and the co-rank of a co-array can be
seven, but the local rank plus co-rank of any co-array subobject that is actually
used in an executable statement must be no more than seven (because the rank
and co-rank are merged and the object treated as a standard array subobject). Thus
the Subset’s restriction on local rank plus co-rank to seven is not typically a severe

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 247

additional constraint. It would be helpful if Fortran 2000 increased the limit on the
rank from seven to, say, ten, since this would give more room for rank plus co-rank.

The restrictions on dummy co-array arguments may require the programmer to
explicitly pass additional array dimension information through the argument list.
The restriction on assumed shape is probably the most severe of all for new pro-
grams, since assumed shape arrays are a significant simplifying factor in Fortran
90/95 programs and Co-Array Fortran requires some kinds of co-array actual argu-
ments to only be associated with assumed shape dummy arguments. It is a conse-
quence of the fact that co-size is always NUM_IMAGES () and therefore that, when
the co-rank is greater than one, the co-array has no final extent, no final upper
bound, and no co-shape.

The Subset does not allow any kind of array element sequence association for
co-arrays. It therefore prohibits an element of a co-array being passed to a subrou-
tine and treated there as a co-array of non-zero rank. Only entire co-arrays can be
passed to explicit-shape co-array dummy arguments and the size of the actual and
dummy argument must be identical.

5.2. Subset Co-Array Fortran into OpenMP Fortran

Subset Co-Array Fortran has been designed to be implementable by mapping
co-arrays onto arrays of higher rank. In particular, they are implementable as shared
OpenMP Fortran arrays. The translation of the Co-Array Fortran 7 program into
OpenMP Fortran presented in Section 3 illustrates what a compiler is required to
do. Any saved or module local variables must be placed in THREADPRIVATE named
common (or just declared THREADPRIVATE in version 2.0). Any named common
that does not contain co-arrays must be made THREADPRIVATE. All co-arrays must
be shared objects. Square brackets are merged to create arrays of higher rank. The
convention that references to a co-array without square brackets is a reference to
the local part of the co-array requires first expanding the reference to include both
round brackets and square brackets, and then merging square brackets to create an
array subobject. References to co-arrays in procedure calls do not typically include
square brackets, but the intent is always unambiguous because the interface must
be explicit when the dummy argument is a co-array. If the dummy argument is not
a co-array, the reference must be expanded to explicitly pass the local part of the
co-array to the procedure. If the dummy argument is an assumed shape co-array
(with co-rank one), the dummy is translated to an assumed shape array with one
higher rank and special handling may also be required on the calling side. Co-Array
intrinsic procedures can be implemented as an OpenMP module. All caf-procedure
calls [6], i.e., calls to procedures that could contain synchronization, must be brack-
eted by FLUSH directives that explicitly name all actual co-arrays in the local scope.
A generic FLUSH without arguments would also be sufficient, but is less efficient
because OpenMP would then flush objects that the original Co-Array source has
identified as not being thread visible. All of Co-Array I/O maps directly onto thread-
safe OpenMP I/O, so the translator may have to explicitly make I/O thread safe,

248 WALLCRAFT

using critical directives, but the mapping is otherwise straight forward. The trans-
lation process has been presented as if performed by a Subset Co-Array Fortran
source to OpenMP Fortran source compiler. Many of the steps are trivial if actually
performed by retargeting an existing native OpenMP Fortran compiler to support
Subset Co-Array Fortran. So on machines with a cache-coherent shared memory
and an OpenMP compiler it would take very little effort on the vendors part to
support Subset Co-Array Fortran. A single compiler is typically already used for
standard Fortran and OpenMP Fortran, with the target language specified at com-
pile and link time. With minor upgrades the same compiler can also support Subset
Co-Array Fortran. There would be a single compiler but three distinct languages, so
linking standard Fortran and Subset Co-Array Fortran objects together would not
be supported (just as linking standard Fortran and OpenMP Fortran objects is not
supported now).

As a “proof of concept” a nawk script has been developed to translate Subset
Co-Array Fortran directly into OpenMP Fortran. Since this is a pattern matching
script, rather than a compiler, it treats some keywords as reserved and requires some
statements be expressed in one of the several alternatives that Fortran provides.
In order to implement TEAM read, I/O unit numbers are restricted to be less than
100,000. The only other significant variances from the Subset Co-Array Fortran
language are those made necessary by a lack of a symbol table identifying modules
and co-arrays by name. The most serious of these is that the local part of a co-array
cannot be referenced without square brackets. To simplify local parts, the script will
automatically translate a copy of the co-array’s declaration square brackets, with
"*" replaced by "@" into square brackets identifying the local part. For example:

COMMON/XCTILB4/ B(N,4)[0:MP-1,0:%]

SAVE /XCTILB4/

CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))
B(:,3)[0:MP-1,0:@] B(:,1)[I_IMG_S,J_IMG_S]
B(:,4)[0:MP-1,0:@] B(:,2)[I_IMG_S,J_IMG_N]
CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

Only the local part of B(:,3) and B(:,4) is used, but square brackets are still
required and have been provided by replicating the square bracket declaration of B
with "*" replaced by "@". The advantage of this extension to the language is that
these square brackets can be removed by a batch stream editor to produce a legal
Subset program. Absent a symbol table tracking explicit interfaces, passing co-arrays
to subroutines also requires extensions to the Subset language. A whole co-array
can be passed to a co-array dummy just as in the Subset, but all other cases rely
on an extension to the Subset to allow co-array sections to be passed as arguments.
A co-array section passed to a co-array dummy must include square brackets that
cover the entire co-extent. A local part passed to a dummy of co-rank zero must
use square brackets to form the corresponding co-array section.

The nawk script obviously provides a way of running Co-Array Fortran programs
(after some manual tweaking) via an OpenMP compiler. But it can also be simply
viewed as a pre-processor that provides an improved SPMD interface for OpenMP.
It has several major advantages over native OpenMP Fortran for SPMD programs.

A COMPARISON OF CO-ARRAY FORTRAN AND OPENMP FORTRAN 249

For example, 1/O is consistent with process-based SPMD APIs and the mapping of
variables onto shared and private memory is greatly enhanced (because the script
automatically places variables in COMMON as necessary). Co-Array Fortran intrinsic
procedures provide a much richer set of synchronization options than OpenMP,
and the special handling of caf-procedures ensures that synchronization of threads
implies synchronization of co-arrays. A disadvantage of the nawk script is that it
provides no error checking. Legal Co-Array Fortran programs are translated to
legal OpenMP Fortran programs, but illegal programs will also be translated and
it is up to the OpenMP compiler to detect the error. Error messages are likely to
be obscure, but relatively few lines are modified in the translation so inspection
of the OpenMP source should provide an indications of the error. A true Subset
Co-Array compiler, either provided as an addition to an OpenMP compiler or as
a stand-alone source to source compiler, would not have any of the restrictions of
the nawk script and would be able to provide clear and relevant error diagnostics
for non-conforming syntax.

One advantage that OpenMP has over Co-Array Fortran is that if an OpenMP
program is designed to work when there is exactly one thread, it is then also a legal
Fortran 90/95 program. The compiler directives have no effect on one thread, and
are ignored by the Fortran 90/95 compiler. A library of a few standard procedures
is required, but is trivial to implement for a single thread. This is not the case for
Co-Array Fortran. Obviously, a Subset Co-Array Fortran source to OpenMP Fortran
source compiler would also be a Subset Co-Array Fortran source to Fortran 90/95
source compiler in the special case of one image. A much simpler source to source
compiler is sufficient in this special case, and a public domain implementation would
provide a useful service to the Co-Array Fortran programming community. This is
not quite just a matter of deleting all references to square brackets, because the
effective rank of a co-array subobject is the sum of its local rank and co-rank. If
the square brackets are deleted the effective rank may change, giving rise to illegal
ranks for intrinsic procedure arguments and non-conforming ranks in some array
assignment statements involving co-arrays.

6. Conclusions

Both Co-Array Fortran and OpenMP Fortran are viable languages for SPMD pro-
grams. Version 2.0 of the OpenMP Fortran specification provides more SPMD
support than previous versions, but still has limitations, particularly in ease of use
and code maintainability, that could be removed with relatively small additions to
the existing suite of compiler directives. OpenMP Fortran is a thread-based lan-
guage and provides comprehensive support for the fine grain synchronization typi-
cal of threaded programs. It is therefore the better candidate when mixing SPMD
and threaded programming styles. Co-Array Fortran has been designed exclusively
for SPMD programming, and has distinct advantages over OpenMP Fortran for
such programs. It is also based on Fortran 90/95, rather than Fortran 77, and For-
tran 90/95 features are becoming increasingly common in large scalable scientific
packages. Co-Array Fortran scales to large distributed shared memory machines,

250 WALLCRAFT

because, unlike OpenMP Fortran, all memory is associated with a particular image.
In fact, Co-Array Fortran can be used on shared nothing systems with physically dis-
tinct memories connected by a network. However, performance is expected to only
be about as good as MPI on such systems. Only one machine, the Cray T3E, has
a Co-Array Fortran compiler today and it is for a subset of the language. OpenMP
Fortran is becoming increasingly widely available on SMP and DSM systems. A for-
mal Subset Co-Array Fortran language is therefore introduced that simplifies map-
ping co-arrays onto standard arrays of higher rank. An OpenMP Fortran compiler
can be extended to support Subset Co-Array Fortran with relatively little effort, as
illustrated by a “proof of concept” nawk script that translates a Subset Co-Array
Fortran like language into OpenMP Fortran. Alternatively, a source to source com-
piler translating Subset Co-Array Fortran into either OpenMP Fortran or Fortran
90/95 plus a threads library would provide portability to all SMP and DSM systems.

Acknowledgments

This is a contribution to the 6.2 Global Ocean Prediction System Modeling Task.
Sponsored by the Office of Naval Research under Program Element 62435N. Also
to the Common HPC Software Support Initiative project Scalable Ocean Models
with Domain Decomposition and Parallel Model Components. Sponsored by the
DoD High Performance Computing Modernization Office. Special thanks to John
Reid of the Rutherford Appleton Laboratory for his careful reading of early drafts
of this paper and his many helpful suggestions.

References

1. Cray Research Inc. Application Programmer’s Library Reference Manual. Cray Research SR-2165,
1996.

2. D. Dougherty. Sed & Awk. O’Reilly and Assoc., Sebastopol, CA, 1990.

3. S. Kleiman, D. Shah, and B. Smaalders. Programming with Threads. SunSoft Press, Prentice Hall,
Upper Saddle River, NJ, 1996.

4. C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr., and M. E. Zosel. The High Perfor-
mance Fortran Handbook. MIT Press, Cambridge, MA, 1994.

5. The Message Passing Interface Forum. MPI-2: Extensions to the Message Passing Interface,
http://www.mpi-forum.org/docs/docs.html, 1997.

6. R. W. Numrich and J. Reid. Co-array Fortran for parallel programming. Fortran Forum, 17(2):1-31,
1998.

7. The OpenMP Organization. OpenMP: A Proposed Industry Standard API for Shared Memory
Programming, http://www.openmp.org, 1997.

8. The OpenMP Organization. OpenMP Fortran Application Programming Interface version 1.1,
http://www.openmp.org, 1999.

9. The OpenMP Organization. OpenMP Fortran Application Programming Interface version 2.0,
http://www.openmp.org, 2000.

10. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Complete Refer-
ence. MIT Press, Cambridge, MA, 1996.

11. A. J. Wallcraft. SPMD OpenMP vs MPI for ocean models. Concurrency: Practice and Experience,
12:1155-1164, 2000.

